Dynamic Filling Characteristics of a Capillary Driven Underfill Process in Flip-Chip Packaging
نویسندگان
چکیده
This study investigates the dynamic flow characteristics of capillary-driven underfill flows in a flip chip package. In the present study, we used two different bump arrays using Sn-2.5Ag solder balls with 80 mm and 100 mm diameters on commercially available flip chips, which have different pitches of 150 mm and 180 mm. First, we measured surface tension and viscosity with a rheometer and a tensiometer, respectively, and conducted an experimental visualization of the dynamic filling behavior of the underfill flows. From the captured images, we estimated the filling times, which can be affected by two important factors: bump arrangements and resin viscosities. In addition, we conducted a FVM (finite volume method)-based numerical simulation using commercial CFD code (Fluent v. 6.3.26), and compared its numerical results to both the experimental data and the analytical solutions given by the previous model described by Wan et al. (2005). The numerical predictions and analytical solutions estimating filling time were in good agreement with the experimental data, and the increase in spatial density of solder bumps allowed the flow to fill more slowly due to the increase in flow resistance. We conclude that the non-Newtonian characteristics and bump arrangement are very important factors in the design of flip-chip packaging. [doi:10.2320/matertrans.M2011151]
منابع مشابه
Capillary-driven micro flows for the underfill process in microelectronics packaging
Capillary-driven micro flow allows liquid transport by interfacial force without external pressure or momentum. Theoretical and experimental studies have been conducted to predict the movement of the flow meniscus in the application of capillary underfill flows. In a flip chip package, two-dimensional motions of flow front through solder bumps can result in unwanted air void formation because t...
متن کاملPlasma for Underfill Process in Flip Chip Packaging
Driven by the fast growing demand for smaller, faster, and higher I/O electronic devices, flip chip technology has attracted significant attention in the electronic packaging industry. Flip chip is a proven packaging technology due to its high performance, reduced form factor, and greater I/O density. In successful flip chip packaging, the underfill process plays an important role because it ca...
متن کاملUnderflow Process for Direct-Chip-Attachment Packaging
-In flip-chip packaging an underfill mixture is placed into the chip-to-substrate standoff created by the array of solder bumps, using a capillary flow process. The underfill mixture is densely filled with solid silica particles to achieve the desired effective coefficient of thermal expansion. Thus during the flow process the underfill mixture is a dense suspension of solid particles in a liqu...
متن کاملReworkable No-Flow Underfills for Flip Chip Applications
Underfill is a polymeric material used in the flip-chip devices that fills the gap between the integrated circuit (IC) chip and the substrate (especially on the organic printed circuit board), and encapsulates the solder interconnects. This underfill can dramatically enhance the reliability of the flip-chip devices as compared to the nonunderfilled devices. No-flow (compress-flow) underfill is ...
متن کامل